Lecture Note

Ickes

Floating Exchange Rates Insulatior

Dynamics

Floating Exchange Rates Econ 434 Lecture

Barry W. Ickes

The Pennsylvania State University

Fall 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How do Floating Rates Work? Locus Floating Exchange Rates Locus Lo

|▲□▶ ▲圖▶ ▲≧▶ ▲≧▶ | 差|||の�@

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Floating rates give up monetary anchor
- Floating rates provide *insulation* from foreign monetary shocks and real shocks

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Floating rates give up monetary anchor
- Floating rates provide *insulation* from foreign monetary shocks and real shocks

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Fear of floating comes from fears of destabilizing speculation

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Floating rates give up monetary anchor
- Floating rates provide *insulation* from foreign monetary shocks and real shocks

- Fear of floating comes from fears of destabilizing speculation
 - Is that possible?

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Floating rates give up monetary anchor
- Floating rates provide *insulation* from foreign monetary shocks and real shocks

- Fear of floating comes from fears of destabilizing speculation
 - Is that possible?
- Excessive volatility of exchange rates

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

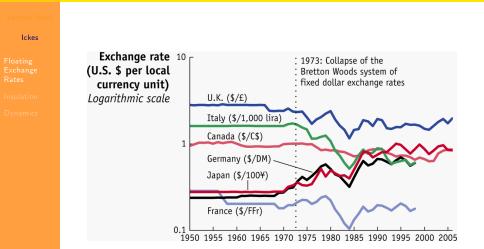
- Floating rates give up monetary anchor
- Floating rates provide *insulation* from foreign monetary shocks and real shocks

- Fear of floating comes from fears of destabilizing speculation
 - Is that possible?
- Excessive volatility of exchange rates
 - Does this reduce trade?

Lecture Note

Ickes

Floating Exchange Rates


Insulation

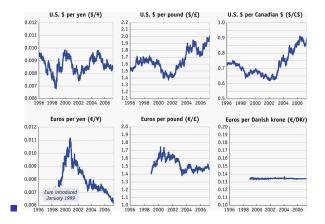
Dynamics

- Floating rates give up monetary anchor
- Floating rates provide *insulation* from foreign monetary shocks and real shocks

- Fear of floating comes from fears of destabilizing speculation
 - Is that possible?
- Excessive volatility of exchange rates
 - Does this reduce trade?
- All would be easy if PPP were true

Fixed versus Floating Rates

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで


Floating Rates in Developed Countries

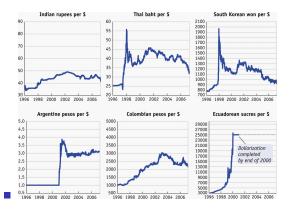
Lecture Note

Ickes

Floating Exchange Rates

Dynamics

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで


Floating Rates in Developing Countries

Ickes

Floating Exchange Rates

Dynamics

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

How do Floating Rates Work? Ickes Exchange rate adjusts instead of international reserves

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

Exchange rate adjusts instead of international reservesRecall the balance of payments equation

$$CA_t + KO_t = \Delta IR_t \tag{1}$$

Lecture Note

Ickes

Floating Exchange Rates Exchange rate adjusts instead of international reservesRecall the balance of payments equation

$$CA_t + KO_t = \Delta IR_t \tag{1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• now
$$CA_t + KO_t = 0$$
.

Lecture Note

Ickes

Floating Exchange Rates Exchange rate adjusts instead of international reservesRecall the balance of payments equation

$$CA_t + KO_t = \Delta IR_t \tag{1}$$

• now $CA_t + KO_t = 0$.

 implies if current account is in balance so is capital account, and vice versa

Lecture Note

Ickes

Floating Exchange Rates • Exchange rate adjusts instead of international reserves

Recall the balance of payments equation

$$CA_t + KO_t = \Delta IR_t \tag{1}$$

- implies if current account is in balance so is capital account, and vice versa
- if *CA* > 0 then *KO* < 0, and vice versa

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

- Exchange rate adjusts instead of international reserves
- Recall the balance of payments equation

$$CA_t + KO_t = \Delta IR_t \tag{1}$$

- implies if current account is in balance so is capital account, and vice versa
- if *CA* > 0 then *KO* < 0, and vice versa
- since $\Delta IR = 0$ shocks to CA or KO effect e not MB

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

- Exchange rate adjusts instead of international reserves
- Recall the balance of payments equation

$$CA_t + KO_t = \Delta IR_t \tag{1}$$

- implies if current account is in balance so is capital account, and vice versa
- if *CA* > 0 then *KO* < 0, and vice versa
- since $\Delta IR = 0$ shocks to CA or KO effect e not MB
- insulation

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

- Exchange rate adjusts instead of international reserves
- Recall the balance of payments equation

$$CA_t + KO_t = \Delta IR_t \tag{1}$$

- implies if current account is in balance so is capital account, and vice versa
- if *CA* > 0 then *KO* < 0, and vice versa
- since $\Delta IR = 0$ shocks to CA or KO effect e not MB
- insulation
- monetary autonomy

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

Flexible prices, assume PPP holds

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Flexible prices, assume PPP holds
- PPP implies P and e are positively related (since P* is exogenous)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Flexible prices, assume PPP holds
- PPP implies P and e are positively related (since P* is exogenous)
- Money market equilibrium implies

$$\frac{M}{P} = I(i^* + \delta, Y) \tag{2}$$

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

- Flexible prices, assume PPP holds
- PPP implies P and e are positively related (since P* is exogenous)
- Money market equilibrium implies

$$\frac{M}{P} = I(i^* + \delta, Y) \tag{2}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• where we have used interest parity condition to substitute for \boldsymbol{i}

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

- Flexible prices, assume PPP holds
- PPP implies P and e are positively related (since P* is exogenous)
- Money market equilibrium implies

$$\frac{M}{P} = I(i^* + \delta, Y) \tag{2}$$

- where we have used interest parity condition to substitute for i
- notice that e does not appear.

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

- Flexible prices, assume PPP holds
- PPP implies P and e are positively related (since P* is exogenous)
- Money market equilibrium implies

$$\frac{M}{P} = I(i^* + \delta, Y) \tag{2}$$

- where we have used interest parity condition to substitute for \boldsymbol{i}
- notice that e does not appear.
 - in full equilibrium $\delta = 0$

Lecture Note

Ickes

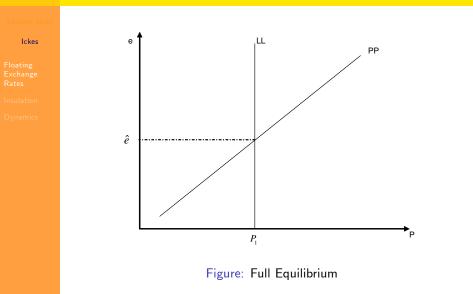
Floating Exchange Rates

- Flexible prices, assume PPP holds
- PPP implies P and e are positively related (since P* is exogenous)
- Money market equilibrium implies

$$\frac{M}{P} = I(i^* + \delta, Y) \tag{2}$$

- where we have used interest parity condition to substitute for \boldsymbol{i}
- notice that e does not appear.
 - in full equilibrium $\delta = 0$
- so if M is given, there is only one P that satisfies (2)

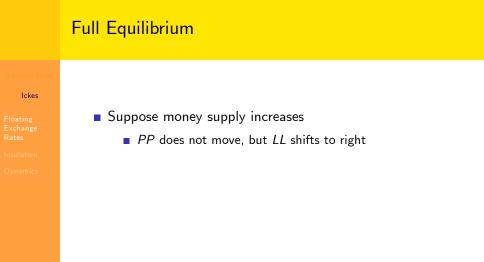
Lecture Note


Ickes

Floating Exchange Rates

- Flexible prices, assume PPP holds
- PPP implies P and e are positively related (since P* is exogenous)
- Money market equilibrium implies

$$\frac{M}{P} = I(i^* + \delta, Y) \tag{2}$$


- where we have used interest parity condition to substitute for i
- notice that e does not appear.
 - in full equilibrium $\delta = 0$
- so if M is given, there is only one P that satisfies (2)
- We have figure 1

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Full Equilibrium Ickes Suppose money supply increases

・ロト ・ 理 ト ・ ヨト ・ ヨー ・ のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

Suppose money supply increases

PP does not move, but LL shifts to right

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

e must rise (dollar depreciates)

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

Suppose money supply increases

PP does not move, but LL shifts to right

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• *e* must rise (dollar depreciates)

• $P^* \uparrow \Longrightarrow e \uparrow$ for any value of P

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

Suppose money supply increases

PP does not move, but LL shifts to right

- e must rise (dollar depreciates)
- $P^* \uparrow \Longrightarrow e \uparrow$ for any value of P
 - PP shifts upwards

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

Suppose money supply increases

- PP does not move, but LL shifts to right
- e must rise (dollar depreciates)
- $P^* \uparrow \Longrightarrow e \uparrow$ for any value of P
 - PP shifts upwards
 - insulation against foreign price shocks

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

Suppose money supply increases

- PP does not move, but LL shifts to right
- e must rise (dollar depreciates)
- $P^* \uparrow \Longrightarrow e \uparrow$ for any value of P
 - PP shifts upwards
 - insulation against foreign price shocks

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

What about rise in Y?

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

Suppose money supply increases

- PP does not move, but LL shifts to right
- e must rise (dollar depreciates)
- $P^* \uparrow \Longrightarrow e \uparrow$ for any value of P
 - PP shifts upwards
 - insulation against foreign price shocks
- What about rise in Y?
 - from (2) money demand rises, so given M, P must fall ⇒ LL shifts left, e↓

Full Equilibrium

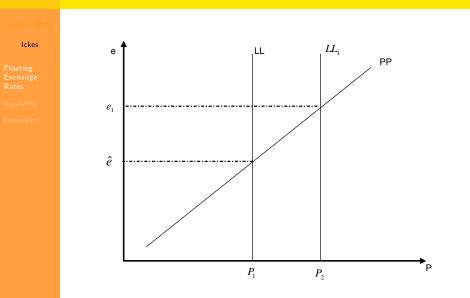
Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics


Suppose money supply increases

- PP does not move, but LL shifts to right
- e must rise (dollar depreciates)
- $P^* \uparrow \Longrightarrow e \uparrow$ for any value of P
 - PP shifts upwards
 - insulation against foreign price shocks
- What about rise in Y?
 - from (2) money demand rises, so given M, P must fall $\implies LL$ shifts left, $e \downarrow$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

same for fall in i*

Statics Figure 10

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ickes

Floating Exchange Rates

Insulation

Dynamics

 Insulation properties of flexible exchange rates in real model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Insulation properties of flexible exchange rates in real model
- Assume domestic price level is given and study output changes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lecture Note

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Insulation properties of flexible exchange rates in real model
- Assume domestic price level is given and study output changes
- Goods market equilibrium requires Y = AD, so

$$Y = \alpha \left[\overline{A} - br + \overline{T} + \phi q \right]$$
(3)

$$= \alpha \left[\overline{A} - b(i - \pi^e) + \overline{T} + \phi q\right]$$
(4)

which is the open-economy *IS* curve (and $\alpha \equiv \frac{1}{1-a+m}$).

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Insulation properties of flexible exchange rates in real model
- Assume domestic price level is given and study output changes
- Goods market equilibrium requires Y = AD, so

$$Y = \alpha \left[\overline{A} - br + \overline{T} + \phi q \right]$$
(3)

$$= \alpha \left[\overline{A} - b(i - \pi^e) + \overline{T} + \phi q\right]$$
(4)

which is the open-economy *IS* curve (and α ≡ 1/(1-a+m)).
Assume perfect capital mobility, *i* = *i** + δ, and for now let δ = 0. Then,

$$Y = \alpha \left[\overline{A} - b(i^* - \pi^e) + \overline{T} + \phi q \right]$$
(5)

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Insulation properties of flexible exchange rates in real model
- Assume domestic price level is given and study output changes
- Goods market equilibrium requires Y = AD, so

$$Y = \alpha \left[\overline{A} - br + \overline{T} + \phi q \right]$$
(3)

$$= \alpha \left[\overline{A} - b(i - \pi^e) + \overline{T} + \phi q\right]$$
(4)

which is the open-economy *IS* curve (and α ≡ 1/(1-a+m)).
Assume perfect capital mobility, *i* = *i** + δ, and for now let δ = 0. Then,

$$Y = \alpha \left[\overline{A} - b(i^* - \pi^e) + \overline{T} + \phi q \right]$$
(5)

 Income depends positively on T, q, and A, and negatively on the interest rate.

Lecture Note

Ickes

Floating Exchange Rates

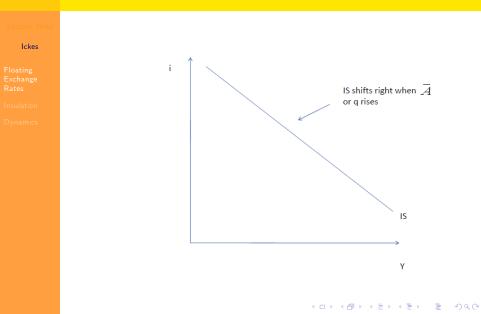
Insulation

Dynamics

- Insulation properties of flexible exchange rates in real model
- Assume domestic price level is given and study output changes
- Goods market equilibrium requires Y = AD, so

$$Y = \alpha \left[\overline{A} - br + \overline{T} + \phi q \right]$$
(3)

$$= \alpha \left[\overline{A} - b(i - \pi^e) + \overline{T} + \phi q\right]$$
(4)


which is the open-economy *IS* curve (and α ≡ 1/(1-a+m)).
Assume perfect capital mobility, *i* = *i** + δ, and for now let δ = 0. Then,

$$Y = \alpha \left[\overline{A} - b(i^* - \pi^e) + \overline{T} + \phi q \right]$$
(5)

Income depends positively on T, q, and A, and negatively on the interest rate.

Since $q \equiv \frac{eP^*}{P}$, $\Longrightarrow \frac{\Delta Y}{\Delta e} > 0$, this is YY curve

Increase in Money Supply

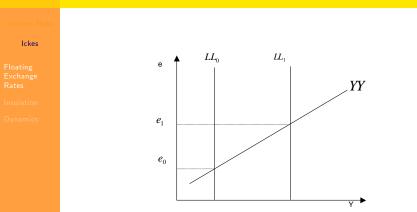
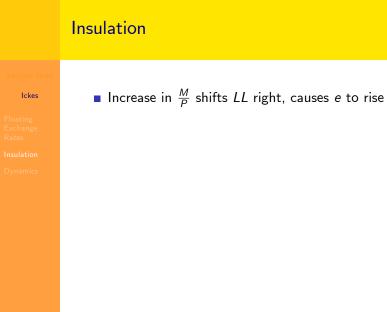
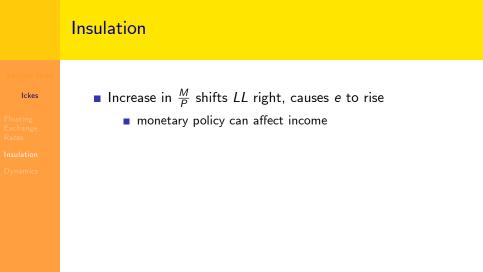




Figure: Output and the Exchange Rate

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

• Increase in $\frac{M}{P}$ shifts *LL* right, causes *e* to rise

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- monetary policy can affect income
- What about shifts in *YY*?

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

- Increase in $\frac{M}{P}$ shifts *LL* right, causes *e* to rise
 - monetary policy can affect income
- What about shifts in YY?
 - fiscal policy, trade policy $(\Delta \overline{T})$, or change in i^* shifts YY

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Increase in $\frac{M}{P}$ shifts *LL* right, causes *e* to rise
 - monetary policy can affect income
- What about shifts in YY?
 - fiscal policy, trade policy (∆T), or change in i* shifts YY
 hence it only affects the exchange rate

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Increase in $\frac{M}{P}$ shifts *LL* right, causes *e* to rise
 - monetary policy can affect income
- What about shifts in YY?
 - fiscal policy, trade policy (∆T), or change in i* shifts YY
 hence it only affects the exchange rate

■ tariff or oil discovery raises T, YY shifts right, e rises ⇒ no effect on Y

Lecture Note

Ickes

Floating Exchange Rates

- Increase in $\frac{M}{P}$ shifts *LL* right, causes *e* to rise
 - monetary policy can affect income
- What about shifts in YY?
 - fiscal policy, trade policy (∆T), or change in i* shifts YY
 hence it only affects the exchange rate

■ tariff or oil discovery raises T, YY shifts right, e rises ⇒ no effect on Y

• fiscal policy is impotent (with respect to Y)

Lecture Note

Ickes

Floating Exchange Rates

- Increase in $\frac{M}{P}$ shifts *LL* right, causes *e* to rise
 - monetary policy can affect income
- What about shifts in YY?
 - fiscal policy, trade policy (∆T), or change in i* shifts YY
 hence it only affects the exchange rate
- tariff or oil discovery raises T, YY shifts right, e rises ⇒ no effect on Y
 - fiscal policy is impotent (with respect to Y)
 - but it does effect NX; fall in e implies less competitive, so if output is unchanged the composition has switched towards domestic goods

Lecture Note

Ickes

Floating Exchange Rates

- Increase in $\frac{M}{P}$ shifts *LL* right, causes *e* to rise
 - monetary policy can affect income
- What about shifts in YY?
 - fiscal policy, trade policy (∆T), or change in i* shifts YY
 hence it only affects the exchange rate
- tariff or oil discovery raises T, YY shifts right, e rises ⇒ no effect on Y
 - fiscal policy is impotent (with respect to Y)
 - but it does effect NX; fall in e implies less competitive, so if output is unchanged the composition has switched towards domestic goods
- flexible exchange rate insulates economy from real shocks

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

 Notice that monetary policy is still important to determination of e

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Lecture Note

Ickes

Floating Exchange Rates

_ ·

 Notice that monetary policy is still important to determination of e

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

• shocks to M lead to changes in e

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

- Notice that monetary policy is still important to determination of e
- shocks to M lead to changes in e
 - it is not the case that flexible exchange rates means market determines e instead of policy

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lecture Note

Ickes

Floating Exchange Rates

Dunamica

- Notice that monetary policy is still important to determination of e
- shocks to *M* lead to changes in *e*
 - it is not the case that flexible exchange rates means market determines e instead of policy
- \blacksquare main difference is how shocks are translated into ΔM vs. Δe

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lecture Note

Ickes

Floating Exchange Rates

- Notice that monetary policy is still important to determination of e
- shocks to *M* lead to changes in *e*
 - it is not the case that flexible exchange rates means market determines e instead of policy
- \blacksquare main difference is how shocks are translated into ΔM vs. Δe

But what matters for welfare are shocks to q not e

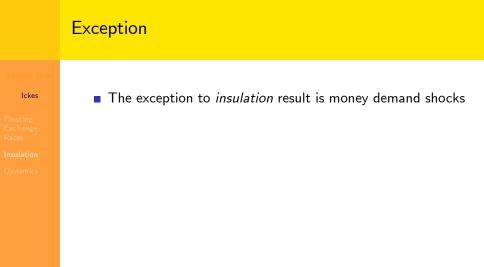
Lecture Note

Ickes

Floating Exchange Rates Insulation

Dynamics

- Notice that monetary policy is still important to determination of e
- shocks to M lead to changes in e
 - it is not the case that flexible exchange rates means market determines e instead of policy
- main difference is how shocks are translated into ΔM vs. Δe
- But what matters for welfare are shocks to q not e
- If we lived in PPP world, adjustment to shocks via ΔP and e = ē would work as well as adjustment via Δe


Lecture Note

Ickes

Floating Exchange Rates Insulation

Dynamics

- Notice that monetary policy is still important to determination of e
- shocks to M lead to changes in e
 - it is not the case that flexible exchange rates means market determines e instead of policy
- main difference is how shocks are translated into ΔM vs. Δe
- But what matters for welfare are shocks to q not e
- If we lived in PPP world, adjustment to shocks via ΔP and e = ē would work as well as adjustment via Δe
 - It is when there are nominal rigidities that Δe may be preferred

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- The exception to *insulation* result is money demand shocks
 - fixed rates provide better insulation if money demand is volatile

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- The exception to *insulation* result is money demand shocks
 - fixed rates provide better insulation if money demand is volatile
- under flexible exchange rates a shock to $I(\cdot) \Longrightarrow LL$ shifts $\longrightarrow Y$ or P to change

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- The exception to *insulation* result is money demand shocks
 - fixed rates provide better insulation if money demand is volatile
- under flexible exchange rates a shock to $I(\cdot) \Longrightarrow LL$ shifts $\longrightarrow Y$ or P to change
 - under fixed exchange rates money supply is endogenous

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- The exception to *insulation* result is money demand shocks
 - fixed rates provide better insulation if money demand is volatile
- under flexible exchange rates a shock to $I(\cdot) \Longrightarrow LL$ shifts $\longrightarrow Y$ or P to change
 - under fixed exchange rates money supply is endogenous
 - Money market equilibrium condition is $\frac{M}{P} = I(i^* + \delta, Y)$

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- The exception to *insulation* result is money demand shocks
 - fixed rates provide better insulation if money demand is volatile
- under flexible exchange rates a shock to $I(\cdot) \Longrightarrow LL$ shifts $\longrightarrow Y$ or P to change
 - under fixed exchange rates money supply is endogenous
 - Money market equilibrium condition is $\frac{M}{P} = I(i^* + \delta, Y)$

• if $e = \overline{e}, \delta = 0$. If $I(\cdot) \uparrow$ then $M \uparrow$, *LL* does not shift

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- The exception to *insulation* result is money demand shocks
 - fixed rates provide better insulation if money demand is volatile
- under flexible exchange rates a shock to $I(\cdot) \Longrightarrow LL$ shifts $\longrightarrow Y$ or P to change
 - under fixed exchange rates money supply is endogenous
 - Money market equilibrium condition is $\frac{M}{P} = I(i^* + \delta, Y)$
 - if $e = \overline{e}, \delta = 0$. If $I(\cdot) \uparrow$ then $M \uparrow$, *LL* does not shift
 - \blacksquare rise in $I(\cdot)$ would cause $i>i^*$, but this attracts capital inflow

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- The exception to *insulation* result is money demand shocks
 - fixed rates provide better insulation if money demand is volatile
- under flexible exchange rates a shock to $I(\cdot) \Longrightarrow LL$ shifts $\longrightarrow Y$ or P to change
 - under fixed exchange rates money supply is endogenous
 - Money market equilibrium condition is $\frac{M}{P} = I(i^* + \delta, Y)$
 - if $e = \overline{e}, \delta = 0$. If $I(\cdot) \uparrow$ then $M \uparrow$, *LL* does not shift
 - \blacksquare rise in $I(\cdot)$ would cause $i>i^*$, but this attracts capital inflow
 - with $e = \overline{e}$, excess supply of foreign exchange causes $M \uparrow$, restoring $i = i^*$

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- The exception to *insulation* result is money demand shocks
 - fixed rates provide better insulation if money demand is volatile
- under flexible exchange rates a shock to $I(\cdot) \Longrightarrow LL$ shifts $\longrightarrow Y$ or P to change
 - under fixed exchange rates money supply is endogenous
 - Money market equilibrium condition is $\frac{M}{P} = I(i^* + \delta, Y)$
 - if $e = \overline{e}, \delta = 0$. If $I(\cdot) \uparrow$ then $M \uparrow$, *LL* does not shift
 - \blacksquare rise in $I(\cdot)$ would cause $i>i^*$, but this attracts capital inflow
 - with $e = \overline{e}$, excess supply of foreign exchange causes $M \uparrow$, restoring $i = i^*$
- Easy to see with IS-LM diagram

Money Demand Shock

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

IS curve is goods market equilibrium

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Lecture Note

Ickes

- Floating Exchange Rates
- Dynamics

- IS curve is goods market equilibrium
- LM curve is money market equilibrium

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lecture Note

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- IS curve is goods market equilibrium
- LM curve is money market equilibrium
- BB curve is external balance condition with perfect capital mobility

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lecture Note

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- IS curve is goods market equilibrium
- LM curve is money market equilibrium
- BB curve is external balance condition with perfect capital mobility

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Start at point A

Lecture Note

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- IS curve is goods market equilibrium
- LM curve is money market equilibrium
- BB curve is external balance condition with perfect capital mobility

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Start at point A
 - rise in $I(\cdot)$ causes $LM \longrightarrow LM'$

Lecture Note

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- IS curve is goods market equilibrium
- LM curve is money market equilibrium
- BB curve is external balance condition with perfect capital mobility

- Start at point A
 - rise in $I(\cdot)$ causes $LM \longrightarrow LM'$
 - would cause $i \uparrow$ in closed economy

Lecture Note

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- IS curve is goods market equilibrium
- LM curve is money market equilibrium
- BB curve is external balance condition with perfect capital mobility
- Start at point A
 - rise in $I(\cdot)$ causes $LM \longrightarrow LM'$
 - would cause $i \uparrow$ in closed economy
 - with $e = \overline{e}$, capital inflow $\Longrightarrow M \uparrow$, $LM' \longrightarrow LM$

Lecture Note

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- IS curve is goods market equilibrium
- LM curve is money market equilibrium
- BB curve is external balance condition with perfect capital mobility
- Start at point A
 - rise in $I(\cdot)$ causes $LM \longrightarrow LM'$
 - would cause $i \uparrow$ in closed economy
 - with $e = \overline{e}$, capital inflow $\Longrightarrow M \uparrow$, $LM' \longrightarrow LM$
 - with flexible $e, e \downarrow \Longrightarrow$ fall in competitiveness shifts *IS* to left \longrightarrow end at *C*

Lecture Note

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- IS curve is goods market equilibrium
- LM curve is money market equilibrium
- BB curve is external balance condition with perfect capital mobility
- Start at point A
 - rise in $I(\cdot)$ causes $LM \longrightarrow LM'$
 - would cause $i \uparrow$ in closed economy
 - with $e = \overline{e}$, capital inflow $\Longrightarrow M \uparrow$, $LM' \longrightarrow LM$
 - with flexible $e, e \downarrow \Longrightarrow$ fall in competitiveness shifts *IS* to left \longrightarrow end at *C*

So best insulation depends on source of shocks to economy

Ickes

Floating Exchange Rates

Insulation

Dynamics

• BP condition, B = CA + KO = 0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ickes

Floating Exchange Rates

Insulation

Dynamics

- BP condition, B = CA + KO = 0
- $KO = \beta(i i^* \delta)$, where β measures capital market integration

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lecture Note

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- BP condition, B = CA + KO = 0
- $KO = \beta(i i^* \delta)$, where β measures capital market integration

• If $\delta = 0$ in full equilibrium, then we have $B = CA + \beta(i - i^*) = 0$

Lecture Note

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- BP condition, B = CA + KO = 0
- $KO = \beta(i i^* \delta)$, where β measures capital market integration

• If $\delta = 0$ in full equilibrium, then we have $B = CA + \beta(i - i^*) = 0$

• Let
$$CA = \overline{T} - mY + \phi q$$

Lecture Note

Ickes

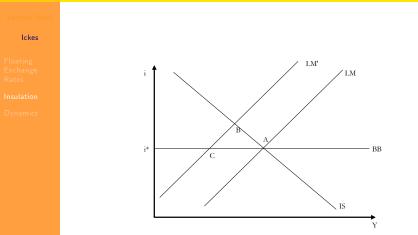
- Floating Exchange Rates
- Insulation
- Dynamics

- BP condition, B = CA + KO = 0
- $KO = \beta(i i^* \delta)$, where β measures capital market integration
- If $\delta = 0$ in full equilibrium, then we have $B = CA + \beta(i - i^*) = 0$

• Let
$$CA = \overline{T} - mY + \phi q$$

• or, $i = i^* + \frac{1}{\beta} \left(\overline{T} - mY + \phi q\right)$: equation of *BB* curve

Lecture Note


Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- BP condition, B = CA + KO = 0
- $KO = \beta(i i^* \delta)$, where β measures capital market integration
- If $\delta = 0$ in full equilibrium, then we have $B = CA + \beta(i i^*) = 0$

• Let
$$CA = \overline{T} - mY + \phi q$$

- or, $i = i^* + \frac{1}{\beta} \left(\overline{T} mY + \phi q\right)$: equation of *BB* curve
- If β → ∞ we have perfect capital mobility and BB is horizontal: i must equal i*

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

× /	1.1		 •
Vc	12.	tıl	111/
V C	na	LII	ILY
			<u> </u>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

Why are exchange rates so volatile?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Key is that currencies are assets

Lecture Note

Ickes

Floating Exchange Rates

Dvnamics

- Why are exchange rates so volatile?
- Key is that currencies are assets
- Information gets absorbed quickly into asset prices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

- Why are exchange rates so volatile?
- Key is that currencies are assets
- Information gets absorbed quickly into asset prices
- Changes in information mean that asset prices move quickly

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

- Why are exchange rates so volatile?
- Key is that currencies are assets
- Information gets absorbed quickly into asset prices
- Changes in information mean that asset prices move quickly

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Asset prices adjust faster than other prices

Ickes

Floating Exchange Rates

Dynamics

Adjustment to full equilibrium

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Ickes

Floating Exchange Rates

Dunamica

- Adjustment to full equilibrium
- Now $\delta \neq 0$, money market equil. depends on expectations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Adjustment to full equilibrium
- Now $\delta \neq 0$, money market equil. depends on expectations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Now
$$\delta \equiv \frac{\widehat{e}_{t+1} - e_t}{e_t}$$

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Adjustment to full equilibrium
- Now $\delta \neq 0$, money market equil. depends on expectations

- Now $\delta \equiv \frac{\widehat{e}_{t+1} e_t}{e_t}$
 - what is \hat{e}_{t+1} ? Assume rational expectations

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Adjustment to full equilibrium
- Now $\delta \neq 0$, money market equil. depends on expectations
- Now $\delta \equiv \frac{\widehat{e}_{t+1} e_t}{e_t}$
 - what is \hat{e}_{t+1} ? Assume rational expectations
 - we know that $e \longrightarrow \tilde{e}$, its long-run equilibrium value

Lecture Note

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Adjustment to full equilibrium
- Now $\delta \neq 0$, money market equil. depends on expectations
- Now $\delta \equiv \frac{\widehat{e}_{t+1} e_t}{e_t}$
 - what is \hat{e}_{t+1} ? Assume rational expectations
 - we know that $e \longrightarrow \widetilde{e}$, its long-run equilibrium value

• Key assumption: prices (or Y) adjust slower than e

Lecture Note

Ickes

- Floating Exchange Rates
- mounderon
- Dynamics

- Adjustment to full equilibrium
- Now $\delta \neq 0$, money market equil. depends on expectations
- Now $\delta \equiv \frac{\widehat{e}_{t+1} e_t}{e_t}$
 - what is \hat{e}_{t+1} ? Assume rational expectations
 - we know that $e \longrightarrow \widetilde{e}$, its long-run equilibrium value

- Key assumption: prices (or Y) adjust slower than e
 - Then e does not move to \tilde{e} instantaneously.

Lecture Note

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Adjustment to full equilibrium
- Now $\delta \neq 0$, money market equil. depends on expectations
- Now $\delta \equiv \frac{\widehat{e}_{t+1} e_t}{e_t}$
 - what is \hat{e}_{t+1} ? Assume rational expectations
 - we know that $e \longrightarrow \widetilde{e}$, its long-run equilibrium value
- Key assumption: prices (or Y) adjust slower than e
 - Then e does not move to e instantaneously.
 - Suppose that $\boldsymbol{\theta}$ is the speed of adjustment to the new equilibrium

Lecture Note

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Adjustment to full equilibrium
- Now $\delta \neq 0$, money market equil. depends on expectations
- Now $\delta \equiv \frac{\widehat{e}_{t+1} e_t}{e_t}$
 - what is \hat{e}_{t+1} ? Assume rational expectations
 - we know that $e \longrightarrow \widetilde{e}$, its long-run equilibrium value
- Key assumption: prices (or Y) adjust slower than e
 - Then e does not move to \tilde{e} instantaneously.
 - Suppose that $\boldsymbol{\theta}$ is the speed of adjustment to the new equilibrium
 - higher $\theta \Longrightarrow$ quicker adjustment to full equilibrium

Ickes

Floating Exchange Rates

Dynamics

Money demand is now

$$rac{M}{P} = I\left[i^* + heta\left(rac{\widetilde{e} - e_t}{e_t}
ight), Y
ight]$$

(6)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

Money demand is now

$$\frac{M}{P} = I\left[i^* + \theta\left(\frac{\widetilde{e} - e_t}{e_t}\right), Y\right]$$
(6)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• If $e_t > \widetilde{e} \Longrightarrow$ lower cost of holding money $\Longrightarrow I[\cdot] \uparrow$

Lecture Note

Ickes

Floating Exchange Rates Insulation

Dynamics

Money demand is now

$$\frac{M}{P} = I\left[i^* + \theta\left(\frac{\tilde{e} - e_t}{e_t}\right), Y\right]$$
(6)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• If $e_t > \widetilde{e} \Longrightarrow$ lower cost of holding money $\Longrightarrow I[\cdot] \uparrow$

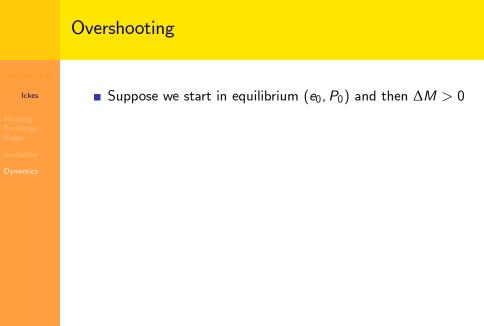
• Notice higher $P \implies$ lower $\frac{M}{P}$, money market equilibrium requires lower I(). Requires higher i

Lecture Note

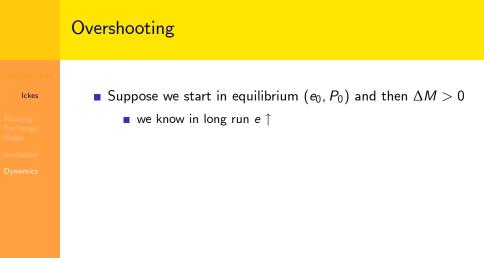
Ickes

Floating Exchange Rates Insulation

Dynamics


Money demand is now

$$\frac{M}{P} = I\left[i^* + \theta\left(\frac{\tilde{e} - e_t}{e_t}\right), Y\right]$$
(6)


• If $e_t > \widetilde{e} \Longrightarrow$ lower cost of holding money $\Longrightarrow I[\cdot] \uparrow$

• Notice higher $P \implies$ lower $\frac{M}{P}$, money market equilibrium requires lower I(). Requires higher i

• requires $e < \widetilde{e} \Longrightarrow MM$ curve is negatively sloped

▲ロト ▲圖 → ▲ 国 ト ▲ 国 - の Q @

Overshooting

Ickes

Floating Exchange Rates

Insulation

Dynamics

• Suppose we start in equilibrium (e_0, P_0) and then $\Delta M > 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- we know in long run $e \uparrow$
- new equilibrium is \overline{e} , P_1

Ickes

Floating Exchange Rates

Insulation

Dynamics

• Suppose we start in equilibrium (e_0, P_0) and then $\Delta M > 0$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- we know in long run $e \uparrow$
- new equilibrium is \overline{e} , P_1
- Suppose *P* adjusts slower than *e*

Ickes

Floating Exchange Rates

Dynamics

• Suppose we start in equilibrium (e_0, P_0) and then $\Delta M > 0$

- we know in long run $e \uparrow$
- new equilibrium is \overline{e} , P_1
- Suppose P adjusts slower than e
 - with $\Delta P = 0 \frac{M}{P} > I(i^*, Y)$

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

• Suppose we start in equilibrium (e_0, P_0) and then $\Delta M > 0$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- we know in long run $e \uparrow$
- new equilibrium is \overline{e} , P_1
- Suppose P adjusts slower than e

• with
$$\Delta P = 0 \frac{M}{P} > I(i^*, Y)$$

■ so e must rise so money demand will increase

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

• Suppose we start in equilibrium (e_0, P_0) and then $\Delta M > 0$

- we know in long run $e \uparrow$
- new equilibrium is \overline{e} , P_1
- Suppose P adjusts slower than e
 - with $\Delta P = 0 \frac{M}{P} > I(i^*, Y)$
 - so e must rise so money demand will increase
 - $e \nearrow e_1$ in figure 3

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

• Suppose we start in equilibrium (e_0, P_0) and then $\Delta M > 0$

- we know in long run $e \uparrow$
- new equilibrium is \overline{e} , P_1
- Suppose *P* adjusts slower than *e*
 - with $\Delta P = 0 \frac{M}{P} > I(i^*, Y)$
 - so e must rise so money demand will increase
 - $e \nearrow e_1$ in figure 3
 - as $P_0 \nearrow P_1$ we move along MM to \overline{e}

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Suppose we start in equilibrium (e_0, P_0) and then $\Delta M > 0$
 - we know in long run $e \uparrow$
 - new equilibrium is \overline{e} , P_1
- Suppose *P* adjusts slower than *e*
 - with $\Delta P = 0 \frac{M}{P} > I(i^*, Y)$
 - so e must rise so money demand will increase
 - $e \nearrow e_1$ in figure 3
 - as $P_0 \nearrow P_1$ we move along MM to \overline{e}
 - notice *MM* anchored by rational expectations

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Suppose we start in equilibrium (e_0, P_0) and then $\Delta M > 0$
 - we know in long run $e \uparrow$
 - new equilibrium is \overline{e} , P_1
- Suppose P adjusts slower than e
 - with $\Delta P = 0 \frac{M}{P} > I(i^*, Y)$
 - so e must rise so money demand will increase
 - $e \nearrow e_1$ in figure 3
 - as $P_0 \nearrow P_1$ we move along MM to \overline{e}
 - notice MM anchored by rational expectations

we follow the path of arrows

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Suppose we start in equilibrium (e_0, P_0) and then $\Delta M > 0$
 - we know in long run $e \uparrow$
 - new equilibrium is \overline{e} , P_1
- Suppose P adjusts slower than e
 - with $\Delta P = 0 \frac{M}{P} > I(i^*, Y)$
 - so e must rise so money demand will increase
 - $e \nearrow e_1$ in figure 3
 - as $P_0 \nearrow P_1$ we move along MM to \overline{e}
 - notice MM anchored by rational expectations
 - we follow the path of arrows
 - notice the exchange rate overshoots its full equilibrium change

Lecture Note

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Suppose we start in equilibrium (e_0, P_0) and then $\Delta M > 0$
 - we know in long run $e \uparrow$
 - new equilibrium is *e*, *P*₁
- Suppose P adjusts slower than e
 - with $\Delta P = 0 \frac{M}{P} > I(i^*, Y)$
 - so e must rise so money demand will increase
 - $e \nearrow e_1$ in figure 3
 - as $P_0 \nearrow P_1$ we move along MM to \overline{e}
 - notice MM anchored by rational expectations
 - we follow the path of arrows
 - notice the exchange rate overshoots its full equilibrium change

$$e_1 - e_0 > \overline{e} - e_0$$

Overshooting Figure 3

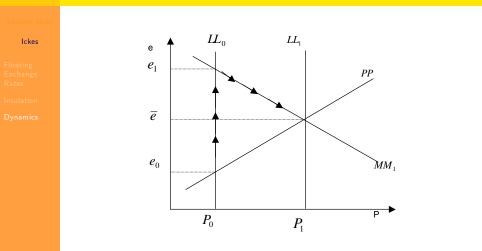


Figure: Overshooting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

Why does the exchange rate overshoot?

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

• Why does the exchange rate overshoot?

• This follows from the assumptions about adjustment speed.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Why does the exchange rate overshoot?
 - This follows from the assumptions about adjustment speed.
 - Notice that ∆M > 0 ⇒ that at unchanged prices there is an excess supply of money.

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Why does the exchange rate overshoot?
 - This follows from the assumptions about adjustment speed.
 - Notice that ΔM > 0 ⇒ that at unchanged prices there is an excess supply of money.
 - To restore money market equilibrium the opportunity cost of holding domestic money must fall so that money demand can increase. The only way this can happen is if agents expect that δ < 0 so that i^{*} + δ can fall.

Lecture Note

Ickes

- Floating Exchange Rates

- Why does the exchange rate overshoot?
 - This follows from the assumptions about adjustment speed.
 - Notice that ΔM > 0 ⇒ that at unchanged prices there is an excess supply of money.
 - To restore money market equilibrium the opportunity cost of holding domestic money must fall so that money demand can increase. The only way this can happen is if agents expect that δ < 0 so that i* + δ can fall.</p>
 - But the only way that agents can rationally expect the exchange rate to *depreciate* is if the exchange rate immediately jumps above the new full equilibrium value.

Lecture Note

Ickes

- Floating Exchange Rates
- Dynamics

- Why does the exchange rate overshoot?
 - This follows from the assumptions about adjustment speed.
 - Notice that ΔM > 0 ⇒ that at unchanged prices there is an excess supply of money.
 - To restore money market equilibrium the opportunity cost of holding domestic money must fall so that money demand can increase. The only way this can happen is if agents expect that $\delta < 0$ so that $i^* + \delta$ can fall.
 - But the only way that agents can rationally expect the exchange rate to *depreciate* is if the exchange rate immediately jumps above the new full equilibrium value.
- As P rises M is now fixed, so $\frac{M}{P}$ falls, equilibrium requires $I(\cdot)$ to fall

Lecture Note

Ickes

- Floating Exchange Rates
- Dynamics

- Why does the exchange rate overshoot?
 - This follows from the assumptions about adjustment speed.
 - Notice that ΔM > 0 ⇒ that at unchanged prices there is an excess supply of money.
 - To restore money market equilibrium the opportunity cost of holding domestic money must fall so that money demand can increase. The only way this can happen is if agents expect that $\delta < 0$ so that $i^* + \delta$ can fall.
 - But the only way that agents can rationally expect the exchange rate to *depreciate* is if the exchange rate immediately jumps above the new full equilibrium value.
- As P rises M is now fixed, so $\frac{M}{P}$ falls, equilibrium requires $I(\cdot)$ to fall
 - requires e to fall along the adjustment path, but this means e must *initially* overshoot

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

 We can see that arbitrage opportunities would arise if e did not overshoot.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

- We can see that arbitrage opportunities would arise if e did not overshoot.
 - In the full equilibrium we know that $\delta = 0$ and that $i = i^*$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

- We can see that arbitrage opportunities would arise if e did not overshoot.
 - In the full equilibrium we know that δ = 0 and that i = i*.
 Because ē > e₀, no overshooting would imply that the exchange rate would appreciate and the currency

depreciate - on the path to the new equilibrium.

Lecture Note

Ickes

Floating Exchange Rates

- We can see that arbitrage opportunities would arise if e did not overshoot.
 - In the full equilibrium we know that $\delta = 0$ and that $i = i^*$.

- But if the currency depreciates in value and domestic interest rates equal foreign interest rates why would anyone hold domestic currency?

Lecture Note

Ickes

- Floating Exchange Rates Insulation
- Dynamics

- We can see that arbitrage opportunities would arise if e did not overshoot.
 - In the full equilibrium we know that $\delta = 0$ and that $i = i^*$.
 - Because ē > e₀, no overshooting would imply that the exchange rate would appreciate and the currency depreciate on the path to the new equilibrium.
- But if the currency depreciates in value and domestic interest rates equal foreign interest rates why would anyone hold domestic currency?
- They will dump dollars and buy foreign currency. This will make the exchange rate increase. When will the dumping of domestic currency end?

Lecture Note

Ickes

- Floating Exchange Rates Insulation
- Dynamics

- We can see that arbitrage opportunities would arise if e did not overshoot.
 - In the full equilibrium we know that $\delta = 0$ and that $i = i^*$.
 - Because ē > e₀, no overshooting would imply that the exchange rate would appreciate and the currency depreciate on the path to the new equilibrium.
- But if the currency depreciates in value and domestic interest rates equal foreign interest rates why would anyone hold domestic currency?
- They will dump dollars and buy foreign currency. This will make the exchange rate increase. When will the dumping of domestic currency end?
 - Until agents expect sufficient currency appreciation to make them once again willing to hold domestic currency.

Lecture Note

Ickes

Floating Exchange Rates

Insulation

Dynamics

Does this imply that arbitrage profits can be made?

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

- Does this imply that arbitrage profits can be made?
- On the contrary, it is only when the exchange rate overshoots to e₁ today that there are no arbitrage profits.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Lecture Note

Ickes

- Floating Exchange Rates
- Dynamics

- Does this imply that arbitrage profits can be made?
- On the contrary, it is only when the exchange rate overshoots to e₁ today that there are no arbitrage profits.
- The overshooting model thus offers an explanation of why asset prices respond rapidly to new information.

Lecture Note

Ickes

- Floating Exchange Rates Insulatior
- Dynamics

- Does this imply that arbitrage profits can be made?
- On the contrary, it is only when the exchange rate overshoots to e₁ today that there are no arbitrage profits.
- The overshooting model thus offers an explanation of why asset prices respond rapidly to new information.
- Of course in practice the economy is subject to many shocks, so asset prices fluctuate in the kind of saw-tooth pattern that is characteristic of these markets.

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

 This is a great model: important result, not obvious, and simple assumptions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lecture Note

Ickes

Floating Exchange Rates

Dvnamics

- This is a great model: important result, not obvious, and simple assumptions
 - Paul Samuelson once remarked that there are very few ideas in economics that are both (a) true and (b), not obvious. Overshooting model is certainly one of those rare ideas.

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

- This is a great model: important result, not obvious, and simple assumptions
 - Paul Samuelson once remarked that there are very few ideas in economics that are both (a) true and (b), not obvious. Overshooting model is certainly one of those rare ideas.

■ Explains an important element of flexible exchange rates → immense volatility (unexpected)

Lecture Note

Ickes

Floating Exchange Rates Insulation

Dynamics

- This is a great model: important result, not obvious, and simple assumptions
 - Paul Samuelson once remarked that there are very few ideas in economics that are both (a) true and (b), not obvious. Overshooting model is certainly one of those rare ideas.

- Explains an important element of flexible exchange rates

 —→ immense volatility (unexpected)
- How does it fit with the facts?

Lecture Note

Ickes

Floating Exchange Rates

- This is a great model: important result, not obvious, and simple assumptions
 - Paul Samuelson once remarked that there are very few ideas in economics that are both (a) true and (b), not obvious. Overshooting model is certainly one of those rare ideas.

- Explains an important element of flexible exchange rates

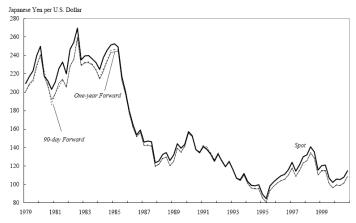
 — immense volatility (unexpected)
- How does it fit with the facts?
 - not as good as hoped

Lecture Note

Ickes

- Floating Exchange Rates Insulation
- Dynamics

- This is a great model: important result, not obvious, and simple assumptions
 - Paul Samuelson once remarked that there are very few ideas in economics that are both (a) true and (b), not obvious. Overshooting model is certainly one of those rare ideas.
- Explains an important element of flexible exchange rates → immense volatility (unexpected)
- How does it fit with the facts?
 - not as good as hoped
 - model implies that in the wake of monetary shocks, the spot rate would be more volatile than forward rate; we don't tend to see this


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lecture Note

Ickes

Floating Exchange Rates Insulation

Dynamics

・ロト ・個ト ・モト ・モト

æ

Source: IMF, International Financial Statistics

Anticipated Policies

Lecture Not

Ickes

Floating Exchange Rates

Dynamics

 Overshooting model =>> that anticipated policies have immediate effects.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Anticipated Policies

Lecture Not

Ickes

- Floating Exchange Rates
- Dynamics

 Overshooting model =>> that anticipated policies have immediate effects.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• Consider announcement $\Delta M > 0$ next period.

Lecture Not

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Overshooting model ⇒ that anticipated policies have immediate effects.
- Consider announcement $\Delta M > 0$ next period.
 - This will cause an appreciation of e and a rise in Y in the new full equilibrium.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Lecture Not

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Overshooting model =>> that anticipated policies have immediate effects.
- Consider announcement $\Delta M > 0$ next period.
 - This will cause an appreciation of e and a rise in Y in the new full equilibrium.

• At impact, however, $\Delta Y = 0$ (or $\Delta P = 0$).

Lecture Not

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Overshooting model ⇒ that anticipated policies have immediate effects.
- Consider announcement $\Delta M > 0$ next period.
 - This will cause an appreciation of e and a rise in Y in the new full equilibrium.

- At impact, however, $\Delta Y = 0$ (or $\Delta P = 0$).
- So asset prices bear the full brunt of the change

Lecture Not

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Overshooting model ⇒ that anticipated policies have immediate effects.
- Consider announcement $\Delta M > 0$ next period.
 - This will cause an appreciation of e and a rise in Y in the new full equilibrium.
 - At impact, however, $\Delta Y = 0$ (or $\Delta P = 0$).
 - So asset prices bear the full brunt of the change
 - Notice that *e* increases as in the case of an unexpected increase in the money stock.

Lecture Not

Ickes

- Floating Exchange Rates
- msuration
- Dynamics

- Overshooting model ⇒ that anticipated policies have immediate effects.
- Consider announcement $\Delta M > 0$ next period.
 - This will cause an appreciation of *e* and a rise in *Y* in the new full equilibrium.
 - At impact, however, $\Delta Y = 0$ (or $\Delta P = 0$).
 - So asset prices bear the full brunt of the change
 - Notice that *e* increases as in the case of an unexpected increase in the money stock.

So the *MM* curve shifts up, and *e* overshoots

Lecture Not

Ickes

- Floating Exchange Rates
- mouración
- Dynamics

- Overshooting model ⇒ that anticipated policies have immediate effects.
- Consider announcement $\Delta M > 0$ next period.
 - This will cause an appreciation of *e* and a rise in *Y* in the new full equilibrium.
 - At impact, however, $\Delta Y = 0$ (or $\Delta P = 0$).
 - So asset prices bear the full brunt of the change
 - Notice that *e* increases as in the case of an unexpected increase in the money stock.

- So the *MM* curve shifts up, and *e* overshoots
- Note that *e* increases *before* the money supply rises.

Lecture Not

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Overshooting model ⇒ that anticipated policies have immediate effects.
- Consider announcement $\Delta M > 0$ next period.
 - This will cause an appreciation of *e* and a rise in *Y* in the new full equilibrium.
 - At impact, however, $\Delta Y = 0$ (or $\Delta P = 0$).
 - So asset prices bear the full brunt of the change
 - Notice that *e* increases as in the case of an unexpected increase in the money stock.
 - So the *MM* curve shifts up, and *e* overshoots
- Note that *e* increases *before* the money supply rises.
 - $\blacksquare \implies Y \uparrow \text{ starts to rise even before the money supply } \uparrow$

Lecture Not

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Overshooting model ⇒ that anticipated policies have immediate effects.
- Consider announcement $\Delta M > 0$ next period.
 - This will cause an appreciation of *e* and a rise in *Y* in the new full equilibrium.
 - At impact, however, $\Delta Y = 0$ (or $\Delta P = 0$).
 - So asset prices bear the full brunt of the change
 - Notice that *e* increases as in the case of an unexpected increase in the money stock.
 - So the *MM* curve shifts up, and *e* overshoots
- Note that *e* increases *before* the money supply rises.
 - $\blacksquare \implies Y \uparrow \text{ starts to rise even before the money supply } \uparrow$

• \uparrow *q* causes net exports to \uparrow

Lecture Note

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Overshooting model ⇒ that anticipated policies have immediate effects.
- Consider announcement $\Delta M > 0$ next period.
 - This will cause an appreciation of *e* and a rise in *Y* in the new full equilibrium.
 - At impact, however, $\Delta Y = 0$ (or $\Delta P = 0$).
 - So asset prices bear the full brunt of the change
 - Notice that *ẽ* increases as in the case of an unexpected increase in the money stock.
 - So the *MM* curve shifts up, and *e* overshoots
- Note that *e* increases *before* the money supply rises.
 - $\blacksquare \implies Y \uparrow \text{ starts to rise even before the money supply } \uparrow$
 - \uparrow q causes net exports to \uparrow
- When $\Delta M > 0$ actually occurs, there is no discontinuous effect on *e*, because that has already been *absorbed* in the price.

Lecture Note

Ickes

Floating Exchange Rates

Dynamics

Of course in practice anticipated policies are not fully believed.

Lecture Not

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Of course in practice anticipated policies are not fully believed.
 - We may expect the money supply to rise, but only probabilistically.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Lecture Not

Ickes

Floating Exchange Rates

Insulation

Dynamics

- Of course in practice anticipated policies are not fully believed.
 - We may expect the money supply to rise, but only probabilistically.
 - A still relatively simple case would be a 50-50 bet that the money supply will increase. Let π be the probability that it rises, so that the exchange rate would be e
 ₁.

Lecture Not

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Of course in practice anticipated policies are not fully believed.
 - We may expect the money supply to rise, but only probabilistically.
 - A still relatively simple case would be a 50-50 bet that the money supply will increase. Let π be the probability that it rises, so that the exchange rate would be e
 ₁.
 - Then with probability 1π the exchange rate would stay at \tilde{e}_0 .

Lecture Not

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Of course in practice anticipated policies are not fully believed.
 - We may expect the money supply to rise, but only probabilistically.
 - A still relatively simple case would be a 50-50 bet that the money supply will increase. Let π be the probability that it rises, so that the exchange rate would be ẽ₁.
 - Then with probability 1π the exchange rate would stay at \tilde{e}_0 .

In that case the expected exchange rate will be $E(\tilde{e}) = \pi \tilde{e}_1 + (1 - \pi)\tilde{e}_2.$

Lecture Not

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Of course in practice anticipated policies are not fully believed.
 - We may expect the money supply to rise, but only probabilistically.
 - A still relatively simple case would be a 50-50 bet that the money supply will increase. Let π be the probability that it rises, so that the exchange rate would be ẽ₁.
 - Then with probability 1π the exchange rate would stay at \tilde{e}_0 .
 - In that case the expected exchange rate will be $E(\tilde{e}) = \pi \tilde{e}_1 + (1 \pi)\tilde{e}_2.$
 - Hence, the MM curve would shift up only half way.

Lecture Not

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Of course in practice anticipated policies are not fully believed.
 - We may expect the money supply to rise, but only probabilistically.
 - A still relatively simple case would be a 50-50 bet that the money supply will increase. Let π be the probability that it rises, so that the exchange rate would be e₁.
 - Then with probability 1π the exchange rate would stay at \tilde{e}_0 .
 - In that case the expected exchange rate will be $E(\tilde{e}) = \pi \tilde{e}_1 + (1 \pi)\tilde{e}_2.$
 - Hence, the *MM* curve would shift up only half way.
 - Then once the uncertainty is resolved (the Fed raises the money stock or does not), the *MM* curve either shifts up again or down.

Lecture Note

Ickes

- Floating Exchange Rates
- Insulation
- Dynamics

- Of course in practice anticipated policies are not fully believed.
 - We may expect the money supply to rise, but only probabilistically.
 - A still relatively simple case would be a 50-50 bet that the money supply will increase. Let π be the probability that it rises, so that the exchange rate would be ẽ₁.
 - Then with probability 1π the exchange rate would stay at \tilde{e}_0 .
 - In that case the expected exchange rate will be $E(\tilde{e}) = \pi \tilde{e}_1 + (1 \pi)\tilde{e}_2.$
 - Hence, the MM curve would shift up only half way.
 - Then once the uncertainty is resolved (the Fed raises the money stock or does not), the MM curve either shifts up again or down.
- The key point is that asset prices move when there is news, or new information. Not on old information.