Econ 434

Professor Ickes

Fall 2006

Homework Assignment #2: Answer Sheet

- 1. Consider the dynamic model. There are two countries, US and Japan. They have identical production functions, $y = Ak^{\beta}$, where A = 100 in both countries, and capital's share, $\beta = 0.4$ in each country. Suppose that the savings rate (1α) is .05 in the US and .20 in Japan.
 - (a) Draw the transition curve for each country.

brief answer The transition equation is $k_{t+1} = (1 - \alpha)(1 - \beta)A_t k_t^{\beta}$. So for the US we have $k_{t+1} = (1 - .95)(1 - .4)(100)k_t^{\beta}$

US Transition Equation: $(1 - .95)(1 - .4)(100)k_t^{.4}$ and for Japan we have $k_{t+1} = (1 - .8)(1 - .4)(100)k_t^{.4}$

- (b) Under autarky compute the steady state capital-labor ratios for the US and Japan. Which country will have higher per-capita output? Explain.
 - **brief answer** We are working with the steady state of the model (see lecture note, page 25, equation 24). The key expression for the steady state capital-labor ratio is

$$\overline{k} = [(1-\alpha)(1-\beta)A_t]^{\frac{1}{1-\beta}}$$

We thus merely substitute and calculate. Thus for the US, we have

$$\overline{k}_{US} = [(1 - .95)(1 - .4)100]^{\frac{1}{1 - .4}} = 6.2403$$

and for Japan,

$$\overline{k}_J = [(1 - .8)(1 - .4)100]^{\frac{1}{1 - .4}} = 62.898$$

To get per-capita output we substitute \overline{k} into the production function. So for the US, we have $\overline{y}_{US} = 100(6.2403)^{.4} = 208.01$, and for Japan we have $\overline{y}_J = 100(62.898)^{.4} = 524.15$.

- (c) Suppose that capital markets are integrated, and assume that the US has twice the population of Japan. What happens to k in each country (i.e., what happens when integration occurs). What will the steady-state capital labor ratio be under complete integration?
 - **brief answer** Since the rate of return is higher in the US, savings will flow from Japan to the US. This means that k will rise in the US, and will fall in Japan. We have $N^{US} = 2N^J$, so $\overline{\alpha} = \frac{1}{3}(.8) + \frac{2}{3}(.95) = 0.9$. So the world steady-state capital-labor ratio is given by:

$$\overline{k}_W = [(1 - .9)(1 - .4)100]^{\frac{1}{1 - .4}} = 19.812$$

1. What will per-capita output be in this steady state? How does it compare to world output under autarky?

- **brief answer** $\overline{y}^W = 100(19.812)^{.4} = 330.20$. Under autarky, output per worker is 208.01 in the US and 524.15 in Japan. Since the US is twice as large as Japan, world output under autarky is $\frac{1}{3}(524.15) + \frac{2}{3}(208.01) = 313.39$. So world output rises with liberalization.
- 2. What will the rate of return to capital be in the new steady state [hint: find an expression for the marginal product of capital]? How does this compare to the rate of return to capital under autarky in each economy?

brief answer The marginal product of capital = $\beta A k^{\beta-1}$, so we have

Production Function

 $f_{\overline{k}_W} = .4(100)(19.812)^{(.4-1)} = 6.\,666\,6$

. For the US and Japan we have, $f_k^{US} = .4(100)(6.240)^{(.4-1)} = 13.334$, and $f_k^J = .4(100)(62.898)^{(.4-1)} = 3.3333$. You can see how much steeper the production function is at x = 6.24 than at x = 62.89.

3. In the integrated capital markets steady state, which economy will have positive net foreign assets and which will have negative? Explain.

brief answer Japan will have positive NFA and the US will have negative, since Japan is investing in the US.

- 4. What is the level of net foreign assets for Japan and for the US? How would you figure this out?
 - brief answer Recall that the steady state capital labor ratio is 19.812. Then savings in Japan is given by $k_{t+1} = (1 - .8)(1 - .4)100(19.812)^{.4} = 39.623$, so 39.623 - 19.812 = 19.811 must be invested abroad, Japan's level of NFA. We can see that this is correct by noting that for the US, we have $k_{t+1} = (1 - .95)(1 - .4)100(19.812)^{.4} = 9.9059$. So each American as -9.905 net foreign assets per worker, while each Japanese has 19.812 in nfa. But recall that there are two Americans for every Japanese, and 2(9.9059) = 19.812.
- (d) Suppose that productivity in the US rises permanently to 150. What will happen to the steady state world capital-labor ratio? Explain.

- brief answer We know that this will raise the return to investing, so the capital-labor ratio will rise. Before, we had $r_{US} = .4(100)(19.812)^{.4-1} = .4(100)(19.812)^{.4-1} = r_J$. Now we have $r_{US} = .4(150)(19.812)^{.4-1} = 9.9999$ which is greater than $r_J = .4(100)(19.812)^{.4-1} = 6.6666$. So capital will flow from Japan to the US to equalize rates of return. The new equilibrium requires, $.4(100)k_J^{.4-1} = .4(150)k_{US}^{.4-1}$, or $\left(\frac{k_{uS}}{k_J}\right)^{.4-1} = \frac{.4(100)}{.4(150)}$ or $\frac{k_{us}}{k_J} = \left(\frac{.4(100)}{.4(150)}\right)^{\frac{1}{.4-1}} = 1.9656$, that is the capital-labor ratio in the US will be 1.965 larger than in Japan. So about 1/3 of the world capital stock is in Japan, the rest in the US. Thus, the world capital labor ratio, $\overline{k}^W = (1 - .9)(1 - .4)[\left(\frac{1}{1+1.965}\right)100 + \left(1 - \frac{1}{1+1.965}\right)150]k^{.4}$, so $\overline{k}_W = [(1 - .9)(1 - .4)[\left(\frac{1}{1+1.965}\right)100 + \left(1 - \frac{1}{1+1.965}\right)100 + \left(1 - \frac{1}{1+1.965}\right)150 = 133.14$, so $\overline{k}_W = [(1 - .9)(1 - .4)(1 -$
 - 1. In the new equilibrium what will be the relative sizes of the two economies (say, in terms of their capital-labor ratios)?
 - brief answer We already showed that the US capital-labor ratio is 1.965 times larger than Japan. We can further show that $k_w = 31.923 = (1/3k)_j + (2/3)k_{us} =$ $(1/3)k_j + (2/3)(1.956)k_j$, so $k_j[1/3 + (2/3)1.965] = 31.923$, or $k_j = \frac{31.923}{1/3 + (2/3)1.965} =$ 19.426, so $k_{us} = 1.965(19.426) = 38.172$. One could then show that output in the US is $y_{us} = 150(38.172)^{.4} = 643.86$, and in Japan we have $k_j =$ $100(19.426)^{.4} = 327.61$. We can see that productivity differences lead to large output differences, even though Japan saves more than the US.